If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+12x=152
We move all terms to the left:
7x^2+12x-(152)=0
a = 7; b = 12; c = -152;
Δ = b2-4ac
Δ = 122-4·7·(-152)
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-20\sqrt{11}}{2*7}=\frac{-12-20\sqrt{11}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+20\sqrt{11}}{2*7}=\frac{-12+20\sqrt{11}}{14} $
| F(1)=-2x+10 | | 3(x-14)=4 | | Y-3=2(x+1 | | -10g+15g=15 | | 5+3(x+6)=32 | | 6x−7=58 | | 17q+4q-15q=6 | | -12x2+25x=84 | | 2p+6/2=26/2 | | 2(x-7)+4x=10 | | 12m-8m-2m+2m-m=15 | | 45x=4780957920750894375 | | 5y-116=64 | | 500=100+5z | | -7(-9+2y)-8y=15 | | 5d+2d+d+2d-3d=14 | | 2s-12+28=4s-12 | | 12d+-17d+12d+-10d=12 | | 1/2(2n+6)=5n-12-2 | | 19a-13a+3a=9 | | 4/x=2x=4 | | 8p-7p-p+p=12 | | (x-5)2+8=44 | | 16=|4x-16| | | 8w+4w-8w=12 | | 90+60+18+5y-3=180 | | 17v-15v=18 | | (x+8)^2-23=-22 | | 10s-9s=12 | | 3+4x=15–2x | | 7x-2=11x-1+15= | | Z^3+2=-2i |